Differential niche dynamics among major marine invertebrate clades
نویسندگان
چکیده
The degree to which organisms retain their environmental preferences is of utmost importance in predicting their fate in a world of rapid climate change. Notably, marine invertebrates frequently show strong affinities for either carbonate or terrigenous clastic environments. This affinity is due to characteristics of the sediments as well as correlated environmental factors. We assessed the conservatism of substrate affinities of marine invertebrates over geological timescales, and found that niche conservatism is prevalent in the oceans, and largely determined by the strength of initial habitat preference. There is substantial variation in niche conservatism among major clades with corals and sponges being among the most conservative. Time-series analysis suggests that niche conservatism is enhanced during times of elevated nutrient flux, whereas niche evolution tends to occur after mass extinctions. Niche evolution is not necessarily elevated in genera exhibiting higher turnover in species composition.
منابع مشابه
What explains patterns of species richness? The relative importance of climatic‐niche evolution, morphological evolution, and ecological limits in salamanders
A major goal of evolutionary biology and ecology is to understand why species richness varies among clades. Previous studies have suggested that variation in richness among clades might be related to variation in rates of morphological evolution among clades (e.g., body size and shape). Other studies have suggested that richness patterns might be related to variation in rates of climatic-niche ...
متن کاملMicrohabitat and Climatic Niche Change Explain Patterns of Diversification among Frog Families.
A major goal of ecology and evolutionary biology is to explain patterns of species richness among clades. Differences in rates of net diversification (speciation minus extinction over time) may often explain these patterns, but the factors that drive variation in diversification rates remain uncertain. Three important candidates are climatic niche position (e.g., whether clades are primarily te...
متن کاملLessons from the past: evolutionary impacts of mass extinctions.
Mass extinctions have played many evolutionary roles, involving differential survivorship or selectivity of taxa and traits, the disruption or preservation of evolutionary trends and ecosystem organization, and the promotion of taxonomic and morphological diversifications-often along unexpected trajectories-after the destruction or marginalization of once-dominant clades. The fossil record sugg...
متن کاملDiversity of the Marine Cyanobacterium Trichodesmium: Characterization of the Woods Hole Culture Collection and Quantification of Field Populations
Trichodesmium is a colonial, N2-fixing cyanobacterium found in tropical oceans. Species of Trichodesmium are genetically similar but several species exist together in the same waters. In order to coexist, Trichodesmium spp. may occupy different niche spaces through differential utilization of resources such as nutrients and light, and through responses to physical characteristics such as temper...
متن کاملRapid speciation and ecological divergence in the American seven-spined gobies (Gobiidae, Gobiosomatini) inferred from a molecular phylogeny.
The American seven-spined gobies (Gobiidae, Gobiosomatini) are highly diverse both in morphology and ecology with many endemics in the Caribbean region. We have reconstructed a molecular phylogeny of 54 Gobiosomatini taxa (65 individuals) based on a 1646-bp region that includes the mitochondrial 12S rRNA, tRNA-Val, and 16S rRNA genes. Our results support the monophyly of the seven-spined gobies...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2014